Downloads provided by UsageCounts
The article describes the importance of improving existing and exploring new algorithms for predicting environmental parameters to improve the quality of environmental monitoring. Because the organization and management of production require the development of new approaches to the problem of control and management of industrial sources of harmful substances based on new information technologies. One of the most problematic places in industrial air quality control and management systems is the development of advanced prospective air pollution forecasting algorithms. These algorithms must take into account t situational changes in data distribution and do not require retraining of atmospheric air pollution parameters. With the advent of neural-like structures, there is a need for their study, including the task of predicting the parameters of air pollution. The object of research is the neural-like structures of the Model of Successive Geometric Transformations. A method for predicting the parameters of atmospheric air pollution based on error correction with the help of a committee of different types of neural-like structures is proposed. In the course of the study, three methods for predicting the parameters of atmospheric air pollution were analyzed: a Generalized Regression Neural Network, a Radial Basis Function, and a neural-like structure of Sequential Geometric Transformations Model. A combination of these methods was performed and the results of the three methods were compared. It is experimentally determined that the prediction of atmospheric air pollution parameters based on the error correction using the committee of neural-like structures of the Sequential Geometric Transformations Model provides a prediction error reduction by 7 % of the General Regression Neural Network and by 2.6 % of the Radial Basis Function with extended General Regression Network. The obtained results increase the reliability and speed of forecasting of atmospheric air parameters to improve the quality of monitoring of emissions of harmful impurities in production and to make environmental management decisions.
атмосферный воздух; нейроподобная структура; основные компоненты; погрешность прогнозирования., UDC 004.8, atmospheric air; neural-like structure; principal components; forecasting error correction, атмосферне повітря; нейроподібна структура; головні компоненти; похибка прогнозування.
атмосферный воздух; нейроподобная структура; основные компоненты; погрешность прогнозирования., UDC 004.8, atmospheric air; neural-like structure; principal components; forecasting error correction, атмосферне повітря; нейроподібна структура; головні компоненти; похибка прогнозування.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 6 | |
| downloads | 4 |

Views provided by UsageCounts
Downloads provided by UsageCounts