Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Health and Technolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Health and Technology
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An orientation free adaptive step detection algorithm using a smart phone in physical activity monitoring

Authors: Huang, Yan; Zheng, Huiru; Nugent, Chris; McCullagh, Paul; Black, Norman; Burns, William; Tully, Mark; +1 Authors

An orientation free adaptive step detection algorithm using a smart phone in physical activity monitoring

Abstract

In this paper we present an Orientation Free Adaptive Step Detection (OFASD) algorithm for deployment in a smart phone for the purposes of physical activity monitoring. The OFASD algorithm detects individual steps and measures a user’s step counts using the smart phone’s in-built accelerometer. The algorithm considers both the variance of an individual’s walking pattern and the orientation of the smart phone. Experimental validation of the algorithm involved the collection of data from 10 participants using five phones (worn at five different body positions) whilst walking on a treadmill at a controlled speed for periods of 5 min. Results indicated that, for steps detected by the OFASD algorithm, there were no significant differences between where the phones were placed on the body (p > 0.05). The mean step detection accuracies ranged from 93.4 % to 96.4 %. Compared to measurements acquired using existing dedicated commercial devices, the results demonstrated that using a smart phone for monitoring physical activity is promising, as it adds value to an accepted everyday accessory, whilst imposing minimum interaction from the user. The algorithm can be used as the underlying component within an application deployed within a smart phone designed to promote self-management of chronic disease where activity measurement is a significant factor, as it provides a practical solution, with minimal requirements for user intervention and less constraints than current solutions.

Country
United Kingdom
Related Organizations
Keywords

600, 004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!