Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UP Research Data Rep...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Waste Management Bulletin
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Waste Management Bulletin
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

Heavy metals removal from mine wastewater using polysulfone membrane infused with waste plastic-derived carbon nanotubes as filler

Authors: Modekwe, Helen U.; Ramatsa, I.M.; Mamo, Messai Adenew; Sadare, Olawumi Oluwafolakemi; Daramola, Michael Olawale; Moothi, Kapil;

Heavy metals removal from mine wastewater using polysulfone membrane infused with waste plastic-derived carbon nanotubes as filler

Abstract

The study focuses on “treating waste with waste” through the removal of toxic metals from gold mine wastewater using polysulfone (PSF) membrane infused with waste plastic derived-multi-walled carbon nanotube (MWCNTs) as an innovative approach. MWCNTs synthesized from waste polypropylene (PP) plastics by the chemical vapour deposition (CVD) method were purified in oxidizing acid, and different loadings (0, 0.05, 0.10, and 0.15 wt%) were incorporated into the PSF membrane to form mixed matrix membranes (MMM) via phase inversion technique. Fabricated pristine and nanocomposite membranes’ properties: hydrophilicity, thermal stability, and morphology, were ascertained by the water contact angle measurement, thermogravimetry analysis, and scanning electron microscopy, respectively. Results show that incorporating plastic-derived-MWCNTs into the matrices of PSF polymer significantly enhanced the properties of all fabricated MWCNTs/PSF nanocomposite membranes compared to pristine PSF. The flux and rejection of metals increased with MWCNTs loading. Iron (Fe) and nickel (Ni) removal by pristine PSF were 70.2% and 11.4%, respectively, while optimal Fe and Ni rejection of 91% and 74%, respectively, were obtained with 0.10 wt% MWCNT loading. The results obtained in this work revealed that incorporating different loadings of plastic-derived-MWCNTs onto the PSF polymer matrix impacted its surface properties, and improved flux, and removal efficiency. Therefore, utilizing waste plastics as a precursor in CNTs production will save on the cost of CNTs and provide a sustainable plastic waste management option, as well as open up vast prospects at the industrial scale in the potential for application in environmental remediation (such as in membrane separation).

Country
South Africa
Related Organizations
Keywords

Polysulfone membrane, Carbon nanotubes, Polysulfone (PSF), 600, Environmental technology. Sanitary engineering, Gold mine wastewater, 620, Standardization. Simplification. Waste, HD62, Heavy metals, SDG-06: Clean water and sanitation, Mixed matrix membrane, Carbon nanotubes (CNTs), TD1-1066, Plastic-derived-carbon nanotubes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
gold