Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ YUHSpace (Yonsei Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Radiology
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Visually assessed colour overlay features in shear-wave elastography for breast masses: quantification and diagnostic performance

Authors: Hye Mi, Gweon; Ji Hyun, Youk; Eun Ju, Son; Jeong-Ah, Kim;

Visually assessed colour overlay features in shear-wave elastography for breast masses: quantification and diagnostic performance

Abstract

To determine whether colour overlay features can be quantified by the standard deviation (SD) of the elasticity measured in shear-wave elastography (SWE) and to evaluate the diagnostic performance for breast masses.One hundred thirty-three breast lesions in 119 consecutive women who underwent SWE before US-guided core needle biopsy or surgical excision were analysed. SWE colour overlay features were assessed using two different colour overlay pattern classifications. Quantitative SD of the elasticity value was measured with the region of interest including the whole breast lesion.For the four-colour overlay pattern, the area under the ROC curve (Az) was 0.947; with a cutoff point between pattern 2 and 3, sensitivity and specificity were 94.4 % and 81.4 %. According to the homogeneity of the elasticity, the Az was 0.887; with a cutoff point between reasonably homogeneous and heterogeneous, sensitivity and specificity were 86.1 % and 82.5 %. For the SD of the elasticity, the Az was 0.944; with a cutoff point of 12.1, sensitivity and specificity were 88.9 % and 89.7 %. The colour overlay features showed significant correlations with the quantitative SD of the elasticity (P < 0.001).The colour overlay features and the SD of the elasticity in SWE showed excellent diagnostic performance and showed good correlations between them.

Related Organizations
Keywords

Image Enhancement/methods*, Adult, 550, 610, Color, Mammary/methods*, User-Computer Interface*, Breast Neoplasms, Breast Neoplasms/diagnosis*, Sensitivity and Specificity, User-Computer Interface, Young Adult, Ultrasound, Humans, Breast, Ultrasonography, Aged, Observer Variation, Colorimetry/methods*, Elasticity Imaging Techniques/methods*, Reproducibility of Results, Middle Aged, Image Enhancement, Elasticity, Breast Neoplasms/physiopathology*, Shear wave, Elasticity Imaging Techniques, Colorimetry, Female, Ultrasonography, Mammary, Elastography, Shear Strength

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 10%
Top 10%
Green