Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Physiol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Physiology
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Physiology
Article . 2025
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Diabetes alters cardiorespiratory dynamics: insights from short-term recurrence quantification analysis of pulse-respiration quotient

Authors: José Javier Reyes-Lagos; Kioko Guzmán-Ramos; Joel Lomelí; Adriana Cristina Pliego-Carrillo; Miguel Ángel Peña-Castillo; Pedro López-Sánchez; Virgilio Eduardo Trujillo-Condes; +5 Authors

Diabetes alters cardiorespiratory dynamics: insights from short-term recurrence quantification analysis of pulse-respiration quotient

Abstract

IntroductionThe Pulse-Respiration Quotient (PRQ) is considered a powerful tool for assessing dynamic interactions between cardiac and respiratory rhythms. Type 2 diabetes mellitus (T2DM) disrupts autonomic control, potentially compromising the complexity and adaptability of cardiorespiratory dynamics. In this cross-sectional, exploratory study, we investigated whether T2DM alters cardiorespiratory dynamics by analyzing short-term PRQ signals using conventional linear indices and Recurrence Quantification Analysis (RQA).MethodsThirty-eight participants (20 T2DM and 18 controls) completed four standardized tasks—supine rest, orthostatic challenge, paced breathing, and the Valsalva maneuver—while electrocardiographic and respiratory signals were continuously recorded. From these signals, R-to-R peak interval (RRI) and breath-to-breath (BB) time series were derived, allowing us to compute the PRQ time series as the ratio of instantaneous heart rate to instantaneous breathing rate. Linear indices of PRQ and RQA metrics were then calculated for the PRQ signals, enabling comparisons between groups (T2DM vs. control) and across tasks. Additionally, entropy-based mutual information (MI) between RRI and BB was assessed as a quantitative measure of cardiorespiratory coupling.ResultsT2DM participants exhibited higher recurrence rates and prolonged recurrence time of the first type in the PRQ series, especially during paced breathing, suggesting a more rigid and less adaptive control mechanism. Although linear PRQ indices showed changes in some stage-dependent responses, they were less adept than RQA metrics at discerning subtle differences between groups. Furthermore, the complementary cardiorespiratory coupling assessment by MI revealed distinct compensatory patterns in T2DM during paced respiration and Valsalva.ConclusionThese findings indicate potential dysautonomia or partial autonomic dysregulation in individuals with T2DM, as reflected by altered cardiorespiratory dynamics and reduced adaptability.

Keywords

nonlinear dynamics, type 2 diabetes mellitus, Physiology, pulse-respiration quotient, QP1-981, recurrence quantification analysis, cardiorespiratory coupling

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold