Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Spor Bilimleri Araşt...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Spor Bilimleri Araştırmaları Dergisi
Article . 2021 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Futbol Verilerinin Karar Ağaçları ve Lojistik Regresyon Yöntemleri ile İncelenmesi

Authors: Duygu TOPÇU; Özgül VUPA ÇİLENGİROĞLU;

Futbol Verilerinin Karar Ağaçları ve Lojistik Regresyon Yöntemleri ile İncelenmesi

Abstract

Futbol dünyada ve Türkiye'de en çok takip edilen sporlardan biridir. Futbolun bu yaygınlık durumu, bilgi teknolojilerinde kullanılmakta ve gelişen veri bilimi ile birlikte maç istatistikleri kolay bir biçimde saptanabilmektedir. Futbol müsabakalarında en çok ilgilenilen konu ise maç sonucudur. Maç sonucunu etkileyen birçok farklı kriter (atılan gol sayısı, takımın aldığı kart sayısı, hava durumu, deplasmanda oynamak vb.) bulunmaktadır. Bu çalışmada Türkiye Futbol Federasyonu Süper Ligi 2019-2020 ve 2020-2021 sezonlarında oynanan karşılaşmalardan elde edilen veriler kullanılmıştır. Takımların kazanma ve kaybetme durumları sınıflandırma ve karar ağacı yöntemleri ile modellenmesi ise çalışmanın temel amacını oluşturmaktadır. Oynanan maçlarda ev sahibi ve rakip takımın aldığı kırmızı veya sarı kartlar, takımlarda yer alan yabancı oyuncu sayıları ve atılan gol sayıları kategorik bir biçime getirilerek bağımsız değişkenler olarak belirlenmiştir. Bu değişkenlere bağlı olarak ev sahibi takımın kazanma veya kaybetme durumu Lojistik Regresyon ve Karar Ağacı (CART, QUEST ve CHAID) algoritmaları kullanılarak modellenmiştir. Çalışma kapsamında altı ayrı model oluşturulmuştur. Oluşturulan modellerin doğruluk yüzdeleri, duyarlılıkları, seçicilikleri ve F-skor değerleri karşılaştırılarak en iyi modelin karar ağaçlarından %67.6’lık doğruluk yüzdesi ile CART algoritması olduğuna karar verilmiştir. Bu modelde yer alan rakip kırmızı kart durumu ile ofansif ve defansif güçlerin takımın kazanmasında ya da kaybetmesinde önemli olduğu tespit edilmiştir. Ayrıca futbol verilerinin modellenmesinde makine öğrenim algoritmalarının kullanılabileceği de gösterilmiştir.

Related Organizations
Keywords

Turizm (Diğer), Tourism (Other), Football;Logistic Regression;Desicions Tree Algorithms, Futbol;Lojistik Regresyon;Karar Ağaçları Algoritmaları

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold