Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ I.R. "OLYMPIAS"arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
I.R. "OLYMPIAS"
Article . 2008
Data sources: I.R. "OLYMPIAS"
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computational Biology and Chemistry
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2008
Data sources: zbMATH Open
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Meta-analysis for ranked discovery datasets: Theoretical framework and empirical demonstration for microarrays

Meta-analysis for ranked discovery datasets: theoretical framework and empirical demonstration for microarrays
Authors: Zintzaras, E.; Ioannidis, J. P.;

Meta-analysis for ranked discovery datasets: Theoretical framework and empirical demonstration for microarrays

Abstract

The combination of results from different large-scale datasets of multidimensional biological signals (such as gene expression profiling) presents a major challenge. Methodologies are needed that can efficiently combine diverse datasets, but can also test the extent of diversity (heterogeneity) across the combined studies. We developed METa-analysis of RAnked DISCovery datasets (METRADISC), a generalized meta-analysis method for combining information across discovery-oriented datasets and for testing between-study heterogeneity for each biological variable of interest. The method is based on non-parametric Monte Carlo permutation testing. The tested biological variables are ranked in each study according to the level of statistical significance. METRADISC tests for each biological variable of interest its average rank and the between-study heterogeneity of the study-specific ranks. After accounting for ties and differences in tested variables across studies, we randomly permute the ranks of each study and the simulated metrics of average rank and heterogeneity are calculated. The procedure is repeated to generate null distributions for the metrics. The use of METRADISC is demonstrated empirically using gene expression data from seven studies comparing prostate cancer cases and normal controls. We offer a new tool for combining complex datasets derived from massive testing, discovery-oriented research and for examining the diversity of results across the combined studies.

Related Organizations
Keywords

Male, Gene Expression Profiling/*statistics & numerical data, Applications of statistics to biology and medical sciences; meta analysis, Meta-Analysis as Topic, Medical applications (general), Humans, *Models, Statistical, Databases, Protein, Nonparametric hypothesis testing, Oligonucleotide Array Sequence Analysis, Models, Statistical, Gene Expression Profiling, Prostatic Neoplasms, Monte Carlo methods, Prostatic Neoplasms/metabolism, *Algorithms, *Meta-Analysis as Topic, *Oligonucleotide Array Sequence Analysis, gene expression, Databases, Protein/*statistics & numerical data, heterogeneity, ranks, Monte Carlo Method, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
Green
Related to Research communities
Cancer Research