
So far we have been concerned with maps from an open subset of ℝ n into ℝ m . Soon we shall be considering maps from a set that is a subset of ℝ n into that very set, what are often called self map s of a set. For example, the map T:[0, 1]→[0, 1] given by Tx = 1 – x is a self map. A trivial example would be the identity map T given by Tx = x on any set X whatsoever. What we shall need is a property of a special kind of self maps called contractions or contraction maps of a closed subset of ℝ n (Theorem 4-1.6 below). Before proceeding to the theorem, we illustrate the ideas involved.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
