Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Neural Networks and Learning Systems
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Geometry-Based Molecular Generation With Deep Constrained Variational Autoencoder

Authors: Chunyan Li; Junfeng Yao; Wei Wei; Zhangming Niu; Xiangxiang Zeng; Jin Li; Jianmin Wang;

Geometry-Based Molecular Generation With Deep Constrained Variational Autoencoder

Abstract

Finding target molecules with specific chemical properties plays a decisive role in drug development. We proposed GEOM-CVAE, a constrained variational autoencoder based on geometric representation for molecular generation with specific properties, which is protein-context-dependent. In terms of machine learning, it includes continuous feature embedding encoder and molecular generation decoder. Our key contribution is to propose an efficient geometric embedding method, including the spatial structure representations of drug molecule (converting the 3-D coordinates into image) and the geometric graph representations of protein target (modeling the protein surface as a mesh). The 3-D geometric information is vital to successful molecular generation, which is different from previous molecular generative methods based on 1-D or 2-D. Our model framework generates specific molecules in two phases, by first generating special image with molecular 3-D information to learn latent representations and generating molecules with constrained condition based on geometric graph convolution for specific protein and then inputting the generated structural molecules into a parser network for obtaining Simplified Molecular Input Line Entry System (SMILES) strings. Our model achieves competitive performance that implies its potential effectiveness to enable the exploration of the vast chemical space for drug discovery.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!