Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Computers
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PolyLUT: Ultra-Low Latency Polynomial Inference With Hardware-Aware Structured Pruning

Authors: Marta Andronic; Jiawen Li; George A. Constantinides;

PolyLUT: Ultra-Low Latency Polynomial Inference With Hardware-Aware Structured Pruning

Abstract

Standard deep neural network inference involves the computation of interleaved linear maps and nonlinear activation functions. Prior work for ultra-low latency implementations has hardcoded these operations inside FPGA lookup tables (LUTs). However, FPGA LUTs can implement a much greater variety of functions. In this paper, we propose a novel approach to training DNNs for FPGA deployment using multivariate polynomials as the basic building block. Our method takes advantage of the flexibility offered by the soft logic, hiding the polynomial evaluation inside the LUTs with minimal overhead. By using polynomial building blocks, we achieve the same accuracy using considerably fewer layers of soft logic than by using linear functions, leading to significant latency and area improvements. LUT-based implementations also face a significant challenge: the LUT size grows exponentially with the number of inputs. Prior work relies on a priori fixed sparsity, with results heavily dependent on seed selection. To address this, we propose a structured pruning strategy using a bespoke hardware-aware group regularizer that encourages a particular sparsity pattern that leads to a small number of inputs per neuron. We demonstrate the effectiveness of PolyLUT on three tasks: network intrusion detection, jet identification at the CERN Large Hadron Collider, and MNIST.

arXiv admin note: text overlap with arXiv:2309.02334

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Hardware Architecture (cs.AR), Computer Science - Hardware Architecture, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green