Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/jiot.2...
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sparsity-Preserving Encodings for Straggler-Optimal Distributed Matrix Computations at the Edge

Authors: Anindya Bijoy Das; Aditya Ramamoorthy; David J. Love; Christopher G. Brinton;

Sparsity-Preserving Encodings for Straggler-Optimal Distributed Matrix Computations at the Edge

Abstract

Matrix computations are a fundamental building-block of edge computing systems, with a major recent uptick in demand due to their use in AI/ML training and inference procedures. Existing approaches for distributing matrix computations involve allocating coded combinations of submatrices to worker nodes, to build resilience to slower nodes, called stragglers. In the edge learning context, however, these approaches will compromise sparsity properties that are often present in the original matrices found at the edge server. In this study, we consider the challenge of augmenting such approaches to preserve input sparsity when distributing the task across edge devices, thereby retaining the associated computational efficiency enhancements. First, we find a lower bound on the weight of coding, i.e., the number of submatrices to be combined to obtain coded submatrices, to provide the resilience to the maximum possible number of straggler devices (for given number of devices and their storage constraints). Next we propose distributed matrix computation schemes which meet the exact lower bound on the weight of the coding. Numerical experiments conducted in Amazon Web Services (AWS) validate our assertions regarding straggler mitigation and computation speed for sparse matrices.

arXiv admin note: text overlap with arXiv:2308.04331

Related Organizations
Keywords

FOS: Computer and information sciences, Stragglers, Computer Science - Distributed, Parallel, and Cluster Computing, MDS Codes, DegreeDisciplines::Engineering::Electrical and Computer Engineering, IoT/edge heterogeneity, Distributed, Parallel, and Cluster Computing (cs.DC), Sparsity, DegreeDisciplines::Engineering::Computational Engineering, Distributed computing, 004, 510

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green