Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

New multiagent coordination optimization algorithms for mixed-binary nonlinear programming with control applications

Authors: Haopeng Zhang; Qing Hui;

New multiagent coordination optimization algorithms for mixed-binary nonlinear programming with control applications

Abstract

Mixed-binary nonlinear programming (MBNP), which can be used to optimize network structure and network parameters simultaneously, has been seen widely in applications of cyber-physical network systems. However, it is quite challenging to develop efficient algorithms to solve it practically. On the other hand, swarm intelligence based optimization algorithms can simulate the cooperation and interaction behaviors from social or nature phenomena to solve complex, nonconvex nonlinear problems with high efficiency. Hence, motivated by this observation, we propose a class of new computationally efficient algorithms called coupled spring forced multiagent coordination optimization (CSFMCO), by exploiting the chaos-like behavior of two-mass two-spring mechanical systems to improve the ability of algorithmic exploration and thus to fast solve the MBNP problem. Together with the continuous version of CSFMCO, a binary version of CSFMCO and a switching version between continuous and binary versions are presented. Moreover, to numerically illustrate our proposed algorithms, a formation control problem and resource allocation problem for cyber-physical networks are investigated by using the proposed algorithms.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!