
Training data containing outliers are often a problem for supervised neural networks learning methods that may not always come up with acceptable performance. In this paper a new, robust to outliers learning algorithm, employing the concept of initial data analysis by the MCD (minimum covariance determinant) estimator, is proposed. Results of implementation and simulation of nets trained with the new algorithm and the traditional backpropagation (BP) algorithm and robust Lmls are presented and compared. The better performance and robustness against outliers for the new method are demonstrated.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
