Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Water Resources Rese...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Resources Research
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Resources Research
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Anomaly Detection Using Machine Learning in Hydrochemical Data From Hot Springs: Implications for Earthquake Prediction

Authors: Ruijie Zhu; Fengtian Yang; Xiaocheng Zhou; Jiao Tian; Yongxian Zhang; Miao He; Jingchao Li; +2 Authors

Anomaly Detection Using Machine Learning in Hydrochemical Data From Hot Springs: Implications for Earthquake Prediction

Abstract

AbstractThis study explores the potential of machine learning algorithms for earthquake prediction, utilizing fluid chemical anomaly data from hot springs. Six hot springs, located within an active fault zone along the southeastern coast of China, were carefully chosen as hydrochemical monitoring sites for an extended period of two and a half years. Using this data, a prediction model integrating six algorithms was developed to forecast M ≥ 5 earthquakes in Taiwan. The model's performance was validated against recorded earthquake events, and the factors influencing its predictive capability were analyzed. Our comprehensive analysis conclusively demonstrates the superiority of machine learning algorithms over traditional statistical methods for earthquake prediction. Additionally, including sampling time in the data sets significantly improves the model's predictive performance. However, it is important to note that the model's predictive performance varies across different hot spring and indicators type, highlighting the importance of identifying optimal indicators for specific scenarios. The model parameters, including the anomaly detection rate (P) and earthquake response time threshold (M), significantly impact the model's predictive capabilities. Therefore, adjustments are needed to optimize the model's performance for practical use. Despite limitations such as the inability to differentiate pre‐earthquake anomalies from post‐earthquake anomalies and pinpoint the precise location of earthquakes, this study successfully showcases the potential of machine learning algorithms in earthquake prediction, paving the way for further research and improved prediction methods.

Related Organizations
Keywords

Environmental sciences, earthquake prediction, machine learning, hot spring, GE1-350, anomaly detection algorithms, hydrogeochemical anomalies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
gold