Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Интерактив плюс - Це...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://interactive-plus.ru/e-...
Article
License: CC BY
Data sources: UnpayWall
https://doi.org/10.21661/r-472...
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tekhnologii adaptivnogo testirovaniia: osobennosti i preimushchestva, razrabotka tipovogo algoritma

Технологии адаптивного тестирования: особенности и преимущества, разработка типового алгоритма
Authors: Sergei Nikolaevich Larin; Evgenii Fedorovich Baranov; Tatiana Sergeevna Larina;

Tekhnologii adaptivnogo testirovaniia: osobennosti i preimushchestva, razrabotka tipovogo algoritma

Abstract

В современных условиях как никогда растет потребность в подготовке квалифицированных специалистов. Внедрение современных информационных технологий значительно ускоряет этот процесс. Вместе с тем возрастает значимость контроля уровня знаний обучаемых. Применение информационных технологий для достижения этих целей способствовало развитию методологии компьютерного адаптивного тестирования, которая сегодня обладает наиболее совершенным инструментарием для контроля и оценки уровня знаний обучаемых. Авторами статьи изложены основные особенности и преимущества применения методологии адаптивного тестирования, а также определены ключевые характеристики, которые были использованы для разработки типового алгоритма проведения адаптивных тестов.

Keywords

контроль, адаптивное тестирование, информационные технологии, оценка, уровень знаний обучаемых

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid