Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ISA Transactionsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ISA Transactions
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-objective iterative optimization algorithm based optimal wavelet filter selection for multi-fault diagnosis of rolling element bearings

Authors: Chuancang, Ding; Ming, Zhao; Jing, Lin; Jinyang, Jiao;

Multi-objective iterative optimization algorithm based optimal wavelet filter selection for multi-fault diagnosis of rolling element bearings

Abstract

Rolling element bearings (REBs) play an essential role in modern machinery and their condition monitoring is significant in predictive maintenance. Due to the harsh operating conditions, multi-fault may co-exist in one bearing and vibration signal always exhibits low signal-to-noise ratio (SNR), which causes difficulties in detecting fault. In the previous studies, maximum correlated kurtosis deconvolution (MCKD) has been validated as an efficient method to extract fault feature in the fault signals. Nonetheless, there are still some challenges when MCKD is applied to fault detection owing to the rigorous requirements of multiple input parameters. To overcome limitation, a multi-objective iterative optimization algorithm (MOIOA) for multi-fault diagnosis is proposed. In this method, correlated kurtosis (CK) is taken as a criterion to select optimal Morlet wavelet filter using the whale optimization algorithm (WOA). Meanwhile, to further eliminate the effect of the inaccurate period on CK, the update process of period is incorporated. After that, the simulated and experimental signals are utilized to testify the validity and superiority of the MOIOA for multiple faults detection by the comparison with MCKD. The results indicate that MOIOA is efficient to extract weak fault features even with heavy noise and harmonic interferences.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!