Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Online Publikationen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.18419/op...
Master thesis . 2012
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Implementation of watershed based image segmentation algorithm in FPGA

Authors: Ruparelia, Sameer;

Implementation of watershed based image segmentation algorithm in FPGA

Abstract

The watershed algorithm is a commonly used method of solving the image segmentation problem. However, of the many variants of the watershed algorithm not all are equally well suited for hardware implementation. Different algorithms are studied and the watershed algorithm based on connected components is selected for the implementation, as it exhibits least computational complexity, good segmentation quality and can be implemented in the FPGA. It has simplified memory access compared to all other watershed based image segmentation algorithms. This thesis proposes a new hardware implementation of the selected watershed algorithm. The main aim of the thesis is to implement image segmentation algorithm in a FPGA which requires minimum hardware resources, low execution time and is suitable for use in real time applications. A pipelined architecture of algorithm is designed, implemented in VHDL and synthesized for Xilinx Virtex-4 FPGA. In the implementation, image is loaded to external memory and algorithm is repeatedly applied to the image. To overcome the problem of over-segmentation, pre-processing step is used before the segmentation and implemented in the pipelined architecture. The pipelined architecture of pre-processing stage can be operated at up to 228 MHz. The computation time for a 512 x 512 image is about 35 to 45 ms using one pipelined segmentation unit. A proposal of parallel architecture is discussed which uses multiple segmentation units and is fast enough for the real time applications. The implemented and proposed architectures are excellent candidates to use for different applications where high speed performance is needed.

Related Organizations
Keywords

Image Processing and Computer Vision Segmentation (CR I.4.6), Types and Design Styles (CR B.7.1), Register-Transfer-Level Implementation, Design (CR B.5.1), Integrated Circuits, 004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green