
With many-core processor architectures emerging, concerns arise regarding the productivity of numerous parallel programming tools, models, and languages as developers from a broad spectrum of science domains struggle to maximize performance and maintain correctness of their applications. Fortunately, a partitioned global address space (PGAS) programming model has demonstrated realizable performance and productivity potential for large parallel computing systems with distributed-memory architectures. One such PGAS approach is SHMEM, a lightweight, shared-memory programming library. Renewed interest for SHMEM has developed around Oppenheim, a recent community-led effort to produce a standardized specification for the SHMEM library amidst incompatible commercial implementations. This paper presents and evaluates the design of TSHMEM (short for TileSHMEM), a new OpenSHMEM library for the Tilera TILE-Gx8036 and TILEPro64 many-core processors. TSHMEM is built atop Tilera-provided libraries with key emphasis upon realizable performance with those libraries, demonstrated through micro benchmarking. Furthermore, SHMEM application portability is illustrated with two case studies. TSHMEM successfully delivers high performance with ease of programmability and portability for SHMEM applications on TILE-Gx and TILEPro architectures.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
