
arXiv: 2411.13048
We introduce a stochastic model of a population with overlapping generations and arbitrary levels of self-fertilization versus outcrossing. We study how the global graph of reproductive relationships, or population pedigree, influences the genealogical relationships of a sample of two gene copies at a genetic locus. Specifically, we consider a diploid Moran model with constant population size $N$ over time, in which a proportion of offspring are produced by selfing. We show that the conditional distribution of the pairwise coalescence time at a single locus given the random pedigree converges to a limit law as $N$ tends to infinity. The distribution of coalescence times obtained in this way predicts variation among unlinked loci in a sample of individuals. Traditional coalescent analyses implicitly average over pedigrees and generally make different predictions. We describe three different behaviors in the limit depending on the relative strengths, from large to small, of selfing versus outcrossing: partial selfing, limited outcrossing, and negligible outcrossing. In the case of partial selfing, coalescence times are related to the Kingman coalescent, similar to what is found in traditional analyses. In the case of limited outcrossing, the retained pedigree information forms a random graph, with coalescence times given by the meeting times of random walks on this graph. In the case of negligible outcrossing, which represents complete or nearly complete selfing, coalescence times are determined entirely by the fixed times to common ancestry of diploid individuals in the pedigree.
53 pages, 8 figures; simplified arguments and streamlined presentation
FOS: Biological sciences, Probability (math.PR), Populations and Evolution (q-bio.PE), FOS: Mathematics, Quantitative Biology - Populations and Evolution, Mathematics - Probability
FOS: Biological sciences, Probability (math.PR), Populations and Evolution (q-bio.PE), FOS: Mathematics, Quantitative Biology - Populations and Evolution, Mathematics - Probability
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
