Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1145/354500...
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Distributed-Memory Parallel Contig Generation for De Novo Long-Read Genome Assembly

Authors: Guidi, Giulia; Raulet, Gabriel; Rokhsar, Daniel; Oliker, Leonid; Yelick, Katherine; Buluc, Aydin;

Distributed-Memory Parallel Contig Generation for De Novo Long-Read Genome Assembly

Abstract

De novo genome assembly, i.e., rebuilding the sequence of an unknown genome from redundant and erroneous short sequences, is a key but computationally intensive step in many genomics pipelines. The exponential growth of genomic data is increasing the computational demand and requires scalable, high-performance approaches. In this work, we present a novel distributed-memory algorithm that, from a string graph representation of the genome and using sparse matrices, generates the contig set, i.e., overlapping sequences that form a map representing a region of a chromosome. Using matrix abstraction, we mask branches in the string graph and compute the connected component to group genomic sequences that belong to the same linear chain (i.e., contig). Then, we perform multiway number partitioning to minimize the load imbalance in local assembly, i.e., concatenation of sequences from a given contig. Based on the assignment obtained by partitioning, we compute the induce subgraph function to redistribute sequences between processes, resulting in a set of local sparse matrices. Finally, we traverse each matrix using depth-first search to concatenate sequences. Our algorithm shows good scaling with parallel efficiency up to 80% on 128 nodes, resulting in uniform genome coverage and showing promising results in terms of assembly quality. Our contig generation algorithm localizes the assembly process to significantly reduce the amount of computation spent on this step. Our work is a step forward for efficient de novo long read assembly of large genomes in a distributed memory.

ICPP22, August 29-September 1, 2022, Bordeaux, France

Keywords

Genomics (q-bio.GN), FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, FOS: Biological sciences, Quantitative Biology - Genomics, Distributed, Parallel, and Cluster Computing (cs.DC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
hybrid