Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Engineeringarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Engineering
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Engineering
Article . 2024
Data sources: DOAJ
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Reconfigurable Data Glove for Reconstructing Physical and Virtual Grasps

Authors: Hangxin Liu; Zeyu Zhang; Ziyuan Jiao; Zhenliang Zhang; Minchen Li; Chenfanfu Jiang; Yixin Zhu; +1 Authors

A Reconfigurable Data Glove for Reconstructing Physical and Virtual Grasps

Abstract

In this work, we present a reconfigurable data glove design to capture different modes of human hand-object interactions, which are critical in training embodied artificial intelligence (AI) agents for fine manipulation tasks. To achieve various downstream tasks with distinct features, our reconfigurable data glove operates in three modes sharing a unified backbone design that reconstructs hand gestures in real time. In the tactile-sensing mode, the glove system aggregates manipulation force via customized force sensors made from a soft and thin piezoresistive material; this design minimizes interference during complex hand movements. The virtual reality (VR) mode enables real-time interaction in a physically plausible fashion: A caging-based approach is devised to determine stable grasps by detecting collision events. Leveraging a state-of-the-art finite element method (FEM), the simulation mode collects data on fine-grained 4D manipulation events comprising hand and object motions in 3D space and how the object's physical properties (e.g., stress and energy) change in accordance with manipulation over time. Notably, the glove system presented here is the first to use high-fidelity simulation to investigate the unobservable physical and causal factors behind manipulation actions. In a series of experiments, we characterize our data glove in terms of individual sensors and the overall system. More specifically, we evaluate the system's three modes by (i) recording hand gestures and associated forces, (ii) improving manipulation fluency in VR, and (iii) producing realistic simulation effects of various tool uses, respectively. Based on these three modes, our reconfigurable data glove collects and reconstructs fine-grained human grasp data in both physical and virtual environments, thereby opening up new avenues for the learning of manipulation skills for embodied AI agents.

Paper accepted by Engineering

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Artificial Intelligence, Data glove, Physics-based simulation, Computer Science - Human-Computer Interaction, Engineering (General). Civil engineering (General), Virtual reality, Human-Computer Interaction (cs.HC), Computer Science - Robotics, Artificial Intelligence (cs.AI), TA1-2040, Tactile sensing, Robotics (cs.RO)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Top 10%
Top 10%
Green
gold