Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Neural Networks and Learning Systems
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Convergence Path to Deep Learning on Noisy Labels

Authors: Defu Liu; Ivor W. Tsang; Guowu Yang;

A Convergence Path to Deep Learning on Noisy Labels

Abstract

In many real-world machine learning classification applications, the model performance based on deep neural networks (DNNs) oftentimes suffers from label noise. Various methods have been proposed in the literature to address this issue, primarily by focusing on designing noise-tolerant loss functions, cleaning label noise, and correcting the objective loss. However, the noise-tolerant loss functions face challenges when the noise level increases. This article aims to reveal a convergence path of a trained model in the presence of label noise, and here, the convergence path depicts the evolution of a trained model over epochs. We first propose a theorem to demonstrate that any surrogate loss function can be used to learn DNNs from noisy labels. Next, theories on the general convergence path for the deep models under label noise are presented and verified through a series of experiments. In addition, we design an algorithm based on the proposed theorems that make efficient corrections on the noisy labels and achieve strong robustness in the DNN models. We designed several experiments using benchmark datasets to assess noise tolerance and verify the theorems presented in this article. The comprehensive experimental results firmly confirm our theoretical results and also clearly validate the effectiveness of our method under various levels of label noise.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!