Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecology and Evolutio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecology and Evolution
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecology and Evolution
Article . 2025
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exposure to Rice Straw Ash Alters Survival, Development and Microbial Diversity in Amphibian Tadpoles

Authors: Qing Tong; Yue‐liang Pan; Qiu‐ru Fan; Wen‐jing Dong; Xin‐zhou Long; Ming‐da Xu; Li‐yong Cui; +1 Authors

Exposure to Rice Straw Ash Alters Survival, Development and Microbial Diversity in Amphibian Tadpoles

Abstract

ABSTRACTAmphibians are increasingly threatened by human activities, with rice straw burning emerging as a significant yet underexplored hazard. This practice may release harmful polycyclic aromatic hydrocarbons (PAHs), disrupt ecosystems, and affect amphibians. However, the impact on tadpole microbiota and development remains unclear. This study used scanning electron microscopy (SEM) and chemical analysis to characterize straw ash toxicity, assessed rice straw aqueous extracts of ash (AEA; 0, 0.75, 1.5, 3, and 6 g L−1) on Rana dybowskii tadpoles survival, growth, and development, and analyzed skin and gut microbiota via Illumina sequencing. Within the AEA, 10 varieties of PAHs exhibited higher quantities, including acenaphthylene, acenaphthene, and anthracene. SEM revealed irregular, porous, layered ash particles. Higher AEA concentrations reduced survival, delayed development, and affected body mass. The alpha diversity of both skin and gut microbiota significantly varied among groups. Beta diversity analyses indicated substantial shifts in microbial community structure with increased AEA concentrations. Linear discriminant analysis (LEfSe) identified microbial taxa enrichment and shifts, including the increase of potentially pathogenic genera such as Citrobacter and Yersinia in high‐concentration groups. BugBase analysis showed significant phenotypic changes in microbial communities. Our findings expose rice straw ash as a silent, global toxin that disrupts amphibian microbiota, growth, and survival—redefining routine straw burning as a planetary biodiversity hazard and urging immediate, sustainable reforms to protect wetland ecosystems.

Related Organizations
Keywords

ecosystem stability, Ecology, microbial diversity, microbiota, straw burning, ecological conservation, QH540-549.5, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold
Related to Research communities
Italian National Biodiversity Future Center