
arXiv: cs/0611090
The performance of algebraic soft-decision decoding of Reed-Solomon codes using bit-level soft information is investigated. Optimal multiplicity assignment strategies of algebraic soft-decision decoding with infinite cost are first studied over erasure channels and the binary symmetric channel. The corresponding decoding radii are calculated in closed forms and tight bounds on the error probability are derived. The multiplicity assignment strategy and the corresponding performance analysis are then generalized to characterize the decoding region of algebraic softdecision decoding over a mixed error and bit-level erasure channel. The bit-level decoding region of the proposed multiplicity assignment strategy is shown to be significantly larger than that of conventional Berlekamp-Massey decoding. As an application, a bit-level generalized minimum distance decoding algorithm is proposed. The proposed decoding compares favorably with many other Reed-Solomon soft-decision decoding algorithms over various channels. Moreover, owing to the simplicity of the proposed bit-level generalized minimum distance decoding, its performance can be tightly bounded using order statistics.
32 pages, 12 figures, to appear in IEEE Trans. on Information Theory
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
