Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACS Chemical Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS Chemical Biology
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fluorescent Benzothiazinone Analogues Efficiently and Selectively Label Dpre1 in Mycobacteria and Actinobacteria

Authors: Raphael Sommer; João Neres; Jérémie Piton; Neeraj Dhar; Astrid van der Sar; Raju Mukherjee; Thierry Laroche; +5 Authors

Fluorescent Benzothiazinone Analogues Efficiently and Selectively Label Dpre1 in Mycobacteria and Actinobacteria

Abstract

Benzothiazinones (BTZ) are highly potent bactericidal inhibitors of mycobacteria and the lead compound, BTZ043, and the optimized drug candidate, PBTZ169, have potential for the treatment of tuberculosis. Here, we exploited the tractability of the BTZ scaffold by attaching a range of fluorophores to the 2-substituent of the BTZ ring via short linkers. We show by means of fluorescence imaging that the most advanced derivative, JN108, is capable of efficiently labeling its target, the essential flavoenzyme DprE1, both in cell-free extracts and after purification as well as in growing cells of different actinobacterial species. DprE1 displays a polar localization in Mycobacterium tuberculosis, M. marinum, M. smegmatis, and Nocardia farcinica but not in Corynebacterium glutamicum. Finally, mutation of the cysteine residue in DprE1 in these species, to which BTZ covalently binds, abolishes completely the interaction with JN108, thereby highlighting the specificity of this fluorescent probe.

Keywords

Thiazines/chemical synthesis, Antitubercular Agents, Thiazines, Microbial Sensitivity Tests, Fluorescence/methods, Fluorescence, Enzyme Inhibitors/chemical synthesis, SDG 3 - Good Health and Well-being, Bacterial Proteins, Actinomycetales, Humans, Actinomycetales/drug effects, Enzyme Inhibitors, Alcohol Oxidoreductases/antagonists & inhibitors, Fluorescent Dyes, Microscopy, Cell Membrane/metabolism, Cell Membrane, Affinity Labels, Antitubercular Agents/chemical synthesis, Hep G2 Cells, Fluoresceins, Fluoresceins/chemical synthesis, Alcohol Oxidoreductases, Microscopy, Fluorescence, Drug Design, Mutation, Fluorescent Dyes/chemical synthesis, Affinity Labels/chemical synthesis, Bacterial Proteins/antagonists & inhibitors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
hybrid