Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY NC SA
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MoCA: Multi-modal Cross-masked Autoencoder for Digital Health Measurements

Authors: Ryu, Howon; Chen, Yuliang; Wang, Yacun; LaCroix, Andrea Z.; Di, Chongzhi; Natarajan, Loki; Wang, Yu; +1 Authors

MoCA: Multi-modal Cross-masked Autoencoder for Digital Health Measurements

Abstract

Wearable devices enable continuous multi-modal physiological and behavioral monitoring, yet analysis of these data streams faces fundamental challenges including the lack of gold-standard labels and incomplete sensor data. While self-supervised learning approaches have shown promise for addressing these issues, existing multi-modal extensions present opportunities to better leverage the rich temporal and cross-modal correlations inherent in simultaneously recorded wearable sensor data. We propose the Multi-modal Cross-masked Autoencoder (MoCA), a self-supervised learning framework that combines transformer architecture with masked autoencoder (MAE) methodology, using a principled cross-modality masking scheme that explicitly leverages correlation structures between sensor modalities. MoCA demonstrates strong performance boosts across reconstruction and downstream classification tasks on diverse benchmark datasets. We further establish theoretical guarantees by establishing a fundamental connection between multi-modal MAE loss and kernelized canonical correlation analysis through a Reproducing Kernel Hilbert Space framework, providing principled guidance for correlation-aware masking strategy design. Our approach offers a novel solution for leveraging unlabeled multi-modal wearable data while handling missing modalities, with broad applications across digital health domains.

Keywords

Machine Learning, FOS: Computer and information sciences, Applications, Machine Learning (stat.ML), Applications (stat.AP), Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green