
The paper considers a two-dimensional mathematical model of filtration of a viscous incompressible liquid or gas in a porous medium. A unique feature of the model under consideration is the incorporation of poroelastic properties of the solid skeleton. From a mathematical point of view, the equations of mass conservation for liquid / gaseous and solid phases, Darcy's law, the rheological ratio for a porous medium, and the conservation law of the balance of forces are considered. The work is aimed at numerical study of the model initial-boundary value problem of carbon dioxide injection into the rock with minimum initial porosity. Also, it is necessary to find out the parameters at which the porosity will increase in the upper layers of the rock and, as a result, the gas will come to the surface. Section 1 contains a statement of the problem and a brief review of scientific papers related to this topic. In Section 2, the original system of constitutive equations is transformed. In the case of slow flows, when the convective term can be neglected, a system arises that consists of a second-order parabolic equation for the effective pressure of the medium and a first-order equation for porosity. Section 3 presents the results and conclusions of a numerical study of the initial-boundary value problem.
filtration, reservoir, porosity, numerical study, carbon dioxide, пористость, углекислый газ, фильтрация, пласт, численное исследование
filtration, reservoir, porosity, numerical study, carbon dioxide, пористость, углекислый газ, фильтрация, пласт, численное исследование
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
