Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental comparison of graph-based approximate nearest neighbor search algorithms on edge devices

Authors: Ali Ganbarov; Jicheng Yuan; Anh Le-Tuan; Manfred Hauswirth; Danh Le Phuoc;

Experimental comparison of graph-based approximate nearest neighbor search algorithms on edge devices

Abstract

In this paper, we present an experimental comparison of various graph-based approximate nearest neighbor (ANN) search algorithms deployed on edge devices for real-time nearest neighbor search applications, such as smart city infrastructure and autonomous vehicles. To the best of our knowledge, this specific comparative analysis has not been previously conducted. While existing research has explored graph-based ANN algorithms, it has often been limited to single-threaded implementations on standard commodity hardware. Our study leverages the full computational and storage capabilities of edge devices, incorporating additional metrics such as insertion and deletion latency of new vectors and power consumption. This comprehensive evaluation aims to provide valuable insights into the performance and suitability of these algorithms for edge-based real-time tracking systems enhanced by nearest-neighbor search algorithms.

Keywords

FOS: Computer and information sciences, Computer Science - Performance, Vector Store, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Graph-based ANNS, Performance (cs.PF), Edge Device, Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Data Structures and Algorithms, Hardware Architecture (cs.AR), Data Structures and Algorithms (cs.DS), Distributed, Parallel, and Cluster Computing (cs.DC), Computer Science - Hardware Architecture

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green