
Recently, I have considered a multi-variable feedforward control practice in a novel way being called “considerate control”. It was shown how the considerate control is related to Bristol gains, which indicate accurately either the required increase in input scope or the reduced output scope as compared to inconsiderate control. Here, considerate control is expanded to regulating control, necessitating some feedback design. Clearly, high-gain feedback leads to considerate control results in low frequency. Considerate pre-compensation decouples loops also at higher frequencies. However, as an analysis of the included examples demonstrates, such considerate design may insert non-minimum phase-lag into loops that did not have it, thus, reducing the loop bandwidth relative to that achievable in a skillful inconsiderate design, sometimes very significantly. As is often the case, there is a trade-off between consideration and performance.
system interaction, Bristol gains, multiloop feedback, Physics, QC1-999, non-minimum phase-lag, considerate control
system interaction, Bristol gains, multiloop feedback, Physics, QC1-999, non-minimum phase-lag, considerate control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
