Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluating Generated Commit Messages with Large Language Models

Authors: Zeng, Qunhong; Zhang, Yuxia; Ma, Zexiong; Jiang, Bo; Sun, Ningyuan; Stol, Klaas-Jan; Mou, Xingyu; +1 Authors

Evaluating Generated Commit Messages with Large Language Models

Abstract

Commit messages are essential in software development as they serve to document and explain code changes. Yet, their quality often falls short in practice, with studies showing significant proportions of empty or inadequate messages. While automated commit message generation has advanced significantly, particularly with Large Language Models (LLMs), the evaluation of generated messages remains challenging. Traditional reference-based automatic metrics like BLEU, ROUGE-L, and METEOR have notable limitations in assessing commit message quality, as they assume a one-to-one mapping between code changes and commit messages, leading researchers to rely on resource-intensive human evaluation. This study investigates the potential of LLMs as automated evaluators for commit message quality. Through systematic experimentation with various prompt strategies and state-of-the-art LLMs, we demonstrate that LLMs combining Chain-of-Thought reasoning with few-shot demonstrations achieve near human-level evaluation proficiency. Our LLM-based evaluator significantly outperforms traditional metrics while maintaining acceptable reproducibility, robustness, and fairness levels despite some inherent variability. This work conducts a comprehensive preliminary study on using LLMs for commit message evaluation, offering a scalable alternative to human assessment while maintaining high-quality evaluation.

Keywords

Software Engineering (cs.SE), FOS: Computer and information sciences, Software Engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green