
Identifying the fault type and faulted phase prior to protection coordination and restoration of the remaining healthy part of the utility power grid in the presence of railway traction load is an important process to ensure power supply system reliability of the grid-connected traction network. An artificial neural network (ANN) based fault classifier has been proposed. The input features to the classifier are derived from multiple detail coefficients of modal current traveling wave signals using the three-level discrete wavelet transform (DWT) with the Daubechies-6 mother wavelet (db6). The Bayesian regularization backpropagation as a supervised machine learning algorithm performs through more than a thousand fault scenarios. The robustness of the proposed DWT-ANN algorithm is verified by testing with the IEEE 9-bus network connected with the large railway traction system through MATLAB Simulink simulations. The superiority in fault identification performance of the proposed algorithm is evident with the highest accuracy of 100% when compared with similar methods.
Karrenbauer transform, ANN classifier, traveling wave, fault identification, Electrical engineering. Electronics. Nuclear engineering, Bayesian regulation backpropagation, Daubechies-6 mother wavelet, TK1-9971
Karrenbauer transform, ANN classifier, traveling wave, fault identification, Electrical engineering. Electronics. Nuclear engineering, Bayesian regulation backpropagation, Daubechies-6 mother wavelet, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
