Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Memetic Computingarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Memetic Computing
Article . 2021 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-objective memetic algorithm for core-periphery structure detection in complex network

Authors: Guo Li; Zexuan Zhu; Lijia Ma; Xiaoliang Ma 0001;

Multi-objective memetic algorithm for core-periphery structure detection in complex network

Abstract

Core-periphery structure detection (CPSD) in complex networks is essential to reveal functional nodes in the complicated systems, e.g., influential nodes in a social network and central cells in a biological network. Some progress has been made in solving the CPSD problem with heuristic algorithms. However, CPSD is naturally an NP-hard optimization problem and the core-periphery structures (CPSs) in real networks usually are not clearly distinguishable. The majority of the existing CPSD methods are single-objective methods relying on some assumptions, preference, and/or prior knowledge. They can provide only one trade-off solution that is inevitably biased and lacks of flexibility in terms of resolution. To address this issue, this paper formulates the CPSD problem as a multi-objective optimization problem (MOP), i.e., minimizing the core-node size and maximizing the core-node capacity of the CPSs, simultaneously. Solving the MOP can provide more accurate CPSs and allow one to explore the network structure at different preferred resolutions. A multi-objective memetic algorithm (called MOMA-PCLS) is accordingly proposed to solve the formulated problem. A new plateau-climbing local search (PCLS) method incorporating the information of the heavy-tailed distribution of the node capacity is introduced to fine-tune the individual solutions in MOMA-PCLS. By combining the evolutionary operations and PCLS, MOMA-PCLS manages to improve the search efficiency significantly. Experimental results on both synthetic and real-world data show the superiority of MOMA-PCLS to other state-of-the-art algorithms in detecting CPSs of complex networks.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!