Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Calculation of the green’s function of boundary value problems for linear ordinary differential equations

Authors: Belyaeva, Irina; Chekanov, Nikalay; Chekanova, Natalia; Kirichenko, Igor; Ptashny, Oleg; Yarkho, Tetyana;

Calculation of the green’s function of boundary value problems for linear ordinary differential equations

Abstract

The Green’s function is widely used in solving boundary value problems for differential equations, to which many mathematical and physical problems are reduced. In particular, solutions of partial differential equations by the Fourier method are reduced to boundary value problems for ordinary differential equations. Using the Green's function for a homogeneous problem, one can calculate the solution of an inhomogeneous differential equation. Knowing the Green's function makes it possible to solve a whole class of problems of finding eigenvalues in quantum field theory. The developed method for constructing the Green’s function of boundary value problems for ordinary linear differential equations is described. An algorithm and program for calculating the Green's function of boundary value problems for differential equations of the second and third orders in an explicit analytical form are presented. Examples of computing the Green's function for specific boundary value problems are given. The fundamental system of solutions of ordinary differential equations with singular points needed to construct the Green's function is calculated in the form of generalized power series with the help of the developed programs in the Maple environment. An algorithm is developed for constructing the Green's function in the form of power series for second-order and third-order differential equations with given boundary conditions. Compiled work programs in the Maple environment for calculating the Green functions of arbitrary boundary value problems for differential equations of the second and third orders. Calculations of the Green's function for specific third-order boundary value problems using the developed program are presented. The obtained approximate Green’s function is compared with the known expressions of the exact Green’s function and very good agreement is found

Keywords

UDC 621.165, функция Грина; обыкновенные дифференциальные уравнения; степенные ряды; обобщенные степенные ряды; краевые задачи, Green's function; ordinary differential equations; power series; generalized power series; boundary value problems, функція Гріна; звичайні диференціальні рівняння; степеневі ряди; узагальнені степеневі ряди; крайові задачі

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 2
  • 3
    views
    2
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
3
2
gold