
This paper deals with a network of computing agents aiming to solve an online optimization problem in a distributed fashion, i.e., by means of local computation and communication, without any central coordinator. We propose the gradient tracking with adaptive momentum estimation (GTAdam) distributed algorithm, which combines a gradient tracking mechanism with first and second order momentum estimates of the gradient. The algorithm is analyzed in the online setting for strongly convex cost functions with Lipschitz continuous gradients. We provide an upper bound for the dynamic regret given by a term related to the initial conditions and another term related to the temporal variations of the objective functions. Moreover, a linear convergence rate is guaranteed in the static setup. The algorithm is tested on a time-varying classification problem, on a (moving) target localization problem, and in a stochastic optimization setup from image classification. In these numerical experiments from multi-agent learning, GTAdam outperforms state-of-the-art distributed optimization methods.
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed Optimization, Optimization and Control (math.OC), FOS: Mathematics, Distributed, Parallel, and Cluster Computing (cs.DC), Mathematics - Optimization and Control, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed Optimization, Optimization and Control (math.OC), FOS: Mathematics, Distributed, Parallel, and Cluster Computing (cs.DC), Mathematics - Optimization and Control, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
