
The results of the study of the electrochemical reduction of multilayer graphene oxide in the potentiostatic mode are presented and the possibility of using alkaline electrolyte (KOH) with the concentration below 0.1 M is shown. The identification of the electrochemically reduced graphene oxide was carried out using the XRD, FTIR and Raman-spectroscopy methods. Applying the method of Raman spectroscopy the increase in the intensity of the G and 2D bands, indicating the formation of few-layer forms of reduced graphene oxide was found. The surface morphology of the electrochemically reduced graphene oxide was studied by means of the SEM method.
щелочной электролит, электрохимический синтез, Chemical technology, оксид графена, TP1-1185, многослойный оксид графена, электрохимическое восстановление
щелочной электролит, электрохимический синтез, Chemical technology, оксид графена, TP1-1185, многослойный оксид графена, электрохимическое восстановление
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
