
The purpose of resource scheduling is to deal with all kinds of unexpected events that may occur in life, such as fire, traffic jam, earthquake and other emergencies, and the scheduling algorithm is one of the key factors affecting the intelligent scheduling system. In the traditional resource scheduling system, because of the slow decision-making, it is difficult to meet the needs of the actual situation, especially in the face of emergencies, the traditional resource scheduling methods have great disadvantages. In order to solve the above problems, this paper takes emergency resource scheduling, a prominent scheduling problem, as an example. Based on Vague set theory and adaptive grid particle swarm optimization algorithm, a multi-objective emergency resource scheduling model is constructed under different conditions. This model can not only integrate the advantages of Vague set theory in dealing with uncertain problems, but also retain the advantages of adaptive grid particle swarm optimization that can solve multi-objective optimization problems and can quickly converge. The research results show that compared with the traditional resource scheduling optimization algorithm, the emergency resource scheduling model has higher resolution accuracy, more reasonable resource allocation, higher efficiency and faster speed in dealing with emergency events than the traditional resource scheduling model. Compared with the conventional fuzzy theory emergency resource scheduling model, its handling speed has increased by more than 3.82 times.
Research
Research
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
