Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SEA: Practical Appli...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SEA: Practical Application of Science
Article . 2025 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Machine Learning-Driven Customer Segmentation: A Behavior-Based Approach for F&B Providers

Authors: Jacint JUHASZ;

Machine Learning-Driven Customer Segmentation: A Behavior-Based Approach for F&B Providers

Abstract

This study explores behavior-based customer segmentation by integrating Recency, Frequency, and Monetary value (RFM) analysis with the K-Means++ clustering algorithm. Using one year of invoice-level transactional data from a Romanian Food and Beverage (F&B) provider serving restaurants and coffee shops, the research aims to deliver actionable insights to enhance marketing and sales strategies. After standardizing the dataset to address scale differences, the Elbow Method was applied to determine the optimal number of clusters, resulting in five distinct customer groups: Champions, Loyal Customers, Promising, Hibernating Customers, and Lost Customers. Notably, the Champion segment, consisting of a single customer, accounts for 15% of total sales, highlighting both profitability and dependence risks. Loyal and Promising customers were identified as the most strategically valuable segments for targeted retention and growth initiatives. The clustering results were validated through visualization techniques and internal metrics, confirming the effectiveness of the segmentation. By relying exclusively on transactional data, this approach ensures GDPR compliance and offers a scalable framework for continuous monitoring and dynamic strategy adaptation. The findings provide immediate financial implications for the company, illustrating the potential of machine learning-driven behavior-based segmentation in B2B markets with frequent, recurring transactions.

Keywords

food and beverage sector, k-means++ algorithm, applied machine learning, A, business analytics, gdpr-compliant data analysis, rfm analysis, General Works

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold