Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Underground Spacearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Underground Space
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Underground Space
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

AI-aided short-term decision making of rockburst damage scale in underground engineering

Authors: Chukwuemeka Daniel; Shouye Cheng; Xin Yin; Zakaria Mohamed Barrie; Yucong Pan; Quansheng Liu; Feng Gao; +2 Authors

AI-aided short-term decision making of rockburst damage scale in underground engineering

Abstract

Rockbursts pose severe risks to underground engineering projects, including mining and tunnelling, where sudden rock failures can lead to substantial infrastructure damage and loss of human lives. An accurate assessment of rockburst damage is essential for safety and effective risk mitigation. This study investigates the effectiveness of ensemble machine learning models optimized through Bayesian optimization (BO) in predicting rockburst damage scales. Nine classifier algorithms, including random forest (RF), were evaluated using a dataset of 254 samples. The research considered factors such as stress conditions, support system capacity, excavation span, geological characteristics, seismic magnitude, peak particle velocity, and rock density as input variables. The rockburst damage scale, categorized into four severity levels based on displaced rock mass, served as the target variable. Among the models evaluated, BO-RF model demonstrated the highest predictive accuracy and generalization capability, achieving 92% testing accuracy. BO-RF model also ranked top in a multi-criteria evaluation framework. This devised ranking system underscores the importance of evaluating model performance on both training and unseen testing data to ensure robust generalization. The findings underscore the effectiveness of BO-RF in enhancing rockburst risk assessment and providing reliable predictive insights for underground engineering applications.

Keywords

Rockburst damage scale, Ensemble learning, Short-term decision making, TA703-712, Engineering geology. Rock mechanics. Soil mechanics. Underground construction, Underground engineering, Bayesian optimization

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold