
pmid: 18270093
Sensor networks are widely used in monitoring and tracking a large number of objects. Without prior knowledge on the dynamics of object distribution, their density estimation could be learned in an adaptive manner to support effective sensor placement. After sensors observe the "current" locations of objects, the estimates of object distribution are updated with these new observations through a recursive distributed expectation-maximization algorithm. Based on the real-time estimates of object distribution, an adaptive sensor placement algorithm could be designed to achieve stable and high accuracy in tracking mass objects. This paper constructs a Gaussian mixture model to characterize the mixture distribution of object locations and proposes a novel methodology to adaptively update sensor placement. Our simulation results demonstrate the effectiveness of the proposed algorithm for adaptive sensor placement and boundary estimation of mass objects.
Imaging, Three-Dimensional, Artificial Intelligence, Image Interpretation, Computer-Assisted, Transducers, Reproducibility of Results, Image Enhancement, Sensitivity and Specificity, Algorithms, Environmental Monitoring, Pattern Recognition, Automated
Imaging, Three-Dimensional, Artificial Intelligence, Image Interpretation, Computer-Assisted, Transducers, Reproducibility of Results, Image Enhancement, Sensitivity and Specificity, Algorithms, Environmental Monitoring, Pattern Recognition, Automated
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
