Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jurnal RESTI (Rekaya...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance Comparison of YOLOv8 and DETR in White Blood Cell Detection

Authors: Rakhmatsyah, Andrian; Abdurohman, Maman; Erfianto, Bayu; Prihatni, Delita;

Performance Comparison of YOLOv8 and DETR in White Blood Cell Detection

Abstract

Automated detection and classification of white blood cells (WBCs) from microscopic images play a vital role in supporting the diagnosis of hematological diseases. Accurate and robust object detection algorithms are essential for handling interclass similarities and imbalanced datasets. This study aims to evaluate and compare the performance of two modern object detection algorithms—Detection Transformer (DeTR) and YOLOv8—in performing multiclass WBC classification using public datasets from various sources with diverse visual characteristics. Five experimental scenarios were designed based on varying class distributions and data augmentation techniques, including horizontal/vertical flipping and random rotation. Both methods were trained and evaluated on the same dataset partitions, and their performances were assessed using the following standard metrics: precision, recall, and F1-score for each WBC class. The results show that YOLOv8 consistently achieved superior and more stable performance across all scenarios, with average F1-scores close to 1.00 even in augmented and imbalanced conditions. In contrast, DeTR performed competitively in balanced scenarios but showed lower consistency, particularly in classes such as Neutrophil and Monocyte. Data augmentation positively affected both models, although the gains were more prominent in YOLOv8. This study highlights the strong potential of YOLOv8 in real-time WBC classification tasks and presents DeTR as a viable yet less-optimized approach for this application. These findings contribute to the advancement of medical image-based object detection and offer valuable insights into the selection of appropriate algorithms for hematological image analysis

Keywords

Transformer, hematology, white blood cell classification, YOLOv8, object detection, DeTR, medical image analysis, data augmentation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold