
En la presente investigación, se desarrolla un novedoso solucionador de computación numérica basado en inteligencia de neuro-enjambre para resolver problemas de valor límite (BVP) periódicos singulares no lineales (NSP) de segundo orden, es decir, NSP-BVP, utilizando la fuerza de modelado de redes neuronales artificiales (ANN) optimizadas con eficacia de búsqueda global de optimización de enjambre de partículas (PSO) respaldada con la metodología de búsqueda local rápida por esquema de punto interior (IPS), es decir, ANN-PSO-IPS. Con el fin de comprobar la competencia, robustez y estabilidad del ANN-PSO-IPS diseñado, se han presentado dos problemas numéricos de los NSP-BVP para diferentes números de neuronas. Los resultados de ANN-PSO-IPS propuestos se comparan con las soluciones exactas disponibles para establecer el valor del solucionador en términos de precisión y convergencia, lo que se respalda aún más a través de los resultados de las métricas de rendimiento estadístico basadas en múltiples implementaciones.
Dans la présente recherche, un nouveau solveur de calcul numérique basé sur l'intelligence de neuro-réchauffement est développé pour résoudre des problèmes de valeurs limites (BVP) de deuxième ordre, c'est-à-dire des NSP-BVP, en utilisant la force de modélisation de réseaux neuronaux artificiels (ANN) optimisés avec l'efficacité de recherche globale de l'optimisation d'essaim de particules (PSO) prise en charge avec la méthodologie de recherche locale rapide par schéma de point intérieur (IPS), c'est-à-dire ANN-PSO-IPS. Afin de vérifier la compétence, la robustesse et la stabilité de l'ANN-PSO-IPS conçu, deux problèmes numériques des NSP-BVP ont été présentés pour différents nombres de neurones. Les résultats de l'ANN-PSO-IPS proposé sont comparés aux solutions exactes disponibles pour établir la valeur du solveur en termes de précision et de convergence, ce qui est ensuite approuvé par les résultats des mesures de performance statistiques basées sur de multiples implémentations.
In the present investigation, a novel neuro-swarming intelligence-based numerical computing solver is developed for solving second order nonlinear singular periodic (NSP) boundary value problems (BVPs), i.e., NSP-BVPs, using modeling strength of artificial neural networks (ANN) optimized with global search efficacy of particle swarm optimization (PSO) supported with the methodology of rapid local search by interior-point scheme (IPS), i.e., ANN-PSO-IPS. In order to check the proficiency, robustness and stability of the designed ANN-PSO-IPS, two numerical problems of the NSP-BVPs have been presented for different number of neurons. The outcomes of proposed ANN-PSO-IPS are compared with the available exact solutions to establish worth of the solver in terms of accuracy and convergence, which is further endorsed through results of statistical performance metrics based on multiple implementations.
في التحقيق الحالي، تم تطوير محلل حوسبة رقمية جديد قائم على الذكاء العصبي لحل مشكلات القيمة الحدية الدورية المفردة غير الخطية (NSP) من الدرجة الثانية (BVPs)، أي NSP - BVPs، باستخدام قوة نمذجة الشبكات العصبية الاصطناعية (ANN) المحسنة بفعالية البحث العالمية لتحسين سرب الجسيمات (PSO) مدعومة بمنهجية البحث المحلي السريع عن طريق مخطط النقاط الداخلية (IPS)، أي ANN - PSO - IPS. من أجل التحقق من كفاءة ومتانة واستقرار ANN - PSO - IPS المصمم، تم تقديم مشكلتين رقميتين لـ NSP - BVPs لعدد مختلف من الخلايا العصبية. تتم مقارنة نتائج ANN - PSO - IPS المقترحة مع الحلول الدقيقة المتاحة لتحديد قيمة المحلل من حيث الدقة والتقارب، والتي يتم اعتمادها بشكل أكبر من خلال نتائج مقاييس الأداء الإحصائي بناءً على تطبيقات متعددة.
Artificial neural network, Artificial intelligence, QC1-999, Robustness (evolution), Swarm intelligence, singular periodic systems, Mathematical analysis, Biochemistry, Quantum mechanics, Gene, statistical analysis, Numerical Methods for Singularly Perturbed Problems, FOS: Mathematics, Boundary value problem, Anomalous Diffusion Modeling and Analysis, Numerical Analysis, Physics-Informed Neural Networks for Scientific Computing, particle swarm optimization, Numerical Computing, Particle swarm optimization, Physics, Mathematical optimization, Statistical and Nonlinear Physics, Computer science, Programming language, Algorithm, Chemistry, Physics and Astronomy, Solver, Modeling and Simulation, Implementation, Physical Sciences, Nonlinear system, interior-point scheme, artificial neural networks, Mathematics, Nonlinear Systems, hybrid approach
Artificial neural network, Artificial intelligence, QC1-999, Robustness (evolution), Swarm intelligence, singular periodic systems, Mathematical analysis, Biochemistry, Quantum mechanics, Gene, statistical analysis, Numerical Methods for Singularly Perturbed Problems, FOS: Mathematics, Boundary value problem, Anomalous Diffusion Modeling and Analysis, Numerical Analysis, Physics-Informed Neural Networks for Scientific Computing, particle swarm optimization, Numerical Computing, Particle swarm optimization, Physics, Mathematical optimization, Statistical and Nonlinear Physics, Computer science, Programming language, Algorithm, Chemistry, Physics and Astronomy, Solver, Modeling and Simulation, Implementation, Physical Sciences, Nonlinear system, interior-point scheme, artificial neural networks, Mathematics, Nonlinear Systems, hybrid approach
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 80 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
