
The paper discusses adaptive filtering using Least Mean Square (LMS) and Recursive Least Square (RLS) algorithms. An algorithm for adjusting the coefficients of an adaptive digital filter in the Residue Number System and a procedure of developed algorithm applying depending on filter length and signal length are proposed. Mathematical modeling of the considered algorithms is performed. Examples are presented to demonstrate how the proposed technique can help the designer in the adjustment of the filter coefficients without the need for extensive trial-and-error procedures. The analysis of the denoising quality and computational complexity is made. Synthetic and real data (earthquake recording) were used while testing. The proposed algorithm surpasses the existing ones like LMS and RLS, and their modifications in a number of parameters: adaptation (denoising) quality, ease of implementation, execution time. The main difference between the developed algorithm is the sequential adaptation of each coefficient with zero error. In the known algorithms, the entire vector of coefficients is iteratively adapted, with some specified accuracy. The iterations (steps) number is determined by the input signal length for all algorithms.
denoising quality, computational complexity, recursive least square algorithm, residue number system, Adaptive digital filter, least mean square algorithm, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
denoising quality, computational complexity, recursive least square algorithm, residue number system, Adaptive digital filter, least mean square algorithm, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
