Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioengineeringarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioengineering
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioengineering
Article . 2024
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Anomaly Detection in Embryo Development and Morphology Using Medical Computer Vision-Aided Swin Transformer with Boosted Dipper-Throated Optimization Algorithm

Authors: Alanoud Al Mazroa; Mashael Maashi; Yahia Said; Mohammed Maray; Ahmad A. Alzahrani; Abdulwhab Alkharashi; Ali M. Al-Sharafi;

Anomaly Detection in Embryo Development and Morphology Using Medical Computer Vision-Aided Swin Transformer with Boosted Dipper-Throated Optimization Algorithm

Abstract

Infertility affects a significant number of humans. A supported reproduction technology was verified to ease infertility problems. In vitro fertilization (IVF) is one of the best choices, and its success relies on the preference for a higher-quality embryo for transmission. These have been normally completed physically by testing embryos in a microscope. The traditional morphological calculation of embryos shows predictable disadvantages, including effort- and time-consuming and expected risks of bias related to individual estimations completed by specific embryologists. Different computer vision (CV) and artificial intelligence (AI) techniques and devices have been recently applied in fertility hospitals to improve efficacy. AI addresses the imitation of intellectual performance and the capability of technologies to simulate cognitive learning, thinking, and problem-solving typically related to humans. Deep learning (DL) and machine learning (ML) are advanced AI algorithms in various fields and are considered the main algorithms for future human assistant technology. This study presents an Embryo Development and Morphology Using a Computer Vision-Aided Swin Transformer with a Boosted Dipper-Throated Optimization (EDMCV-STBDTO) technique. The EDMCV-STBDTO technique aims to accurately and efficiently detect embryo development, which is critical for improving fertility treatments and advancing developmental biology using medical CV techniques. Primarily, the EDMCV-STBDTO method performs image preprocessing using a bilateral filter (BF) model to remove the noise. Next, the swin transformer method is implemented for the feature extraction technique. The EDMCV-STBDTO model employs the variational autoencoder (VAE) method to classify human embryo development. Finally, the hyperparameter selection of the VAE method is implemented using the boosted dipper-throated optimization (BDTO) technique. The efficiency of the EDMCV-STBDTO method is validated by comprehensive studies using a benchmark dataset. The experimental result shows that the EDMCV-STBDTO method performs better than the recent techniques.

Keywords

image preprocessing, Technology, QH301-705.5, T, embryo development, boosted dipper-throated optimization, Biology (General), computer vision, swin transformer, Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold