Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Minimizing Delay at Closely Spaced Signalized Intersections Through Green Time Ratio Optimization: A Hybrid Approach With K-Means Clustering and Genetic Algorithms

Authors: Ruti R. Politi; Serhan Tanyel;

Minimizing Delay at Closely Spaced Signalized Intersections Through Green Time Ratio Optimization: A Hybrid Approach With K-Means Clustering and Genetic Algorithms

Abstract

Closely spaced intersections play a key role in traffic flow management. This study aims to model different traffic related parameters to minimize the delay of a closely spaced intersection by optimizing the green time ratio with the help of the genetic algorithm. The factors influencing optimization were selected as the distance between two adjacent intersections, cycle time, degree of saturation, green time ratio, volume, and the queue length-to-distance ratio, which is considered the Index parameter. The dataset was calibrated, validated, and used to simulate the analysis of traffic scenarios using SIDRA Intersection. To provide a clearer analysis, the k-means clustering algorithm was applied to divide the distances into three clusters. Among these clusters, the distance range between 110 and 160 meters is identified as the transition zone. The optimal green time ratio to minimize delay value for closely spaced intersection clusters was determined within a range of 0.58 to 0.69. To ensure a more comprehensive analysis, these values are used to examine their impact on delays. For this reason, the scenarios were restructured again with SIDRA using the newly optimized values to evaluate whether there is any reduction in the traffic-related parameters. The delay values and their temporal fluctuations showed significant improvements with this hybrid approach. The optimized green time ratios reduced delay, degree of saturation, and CO2 emissions by 8.95%, 8%, and 4.72% at the downstream intersection, and by 6.86%, 6.16%, and 7.09% at the upstream intersection, respectively.

Keywords

delay, genetic algorithm, k-means cluster analysis, Electrical engineering. Electronics. Nuclear engineering, Signalized closely spaced intersection, optimization, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold