Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Neuroradiology J...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of computed tomography perfusion post-processing algorithms on optimal threshold selection for final infarct volume prediction

Authors: Ryan A Rava; Kenneth V Snyder; Maxim Mokin; Muhammad Waqas; Ariana B Allman; Jillian L Senko; Alexander R Podgorsak; +5 Authors

Effect of computed tomography perfusion post-processing algorithms on optimal threshold selection for final infarct volume prediction

Abstract

In acute ischemic stroke (AIS) patients, eligibility for endovascular intervention is commonly determined through computed tomography perfusion (CTP) analysis by quantifying ischemic tissue using perfusion parameter thresholds. However, thresholds are not uniform across all analysis methods due to dependencies on patient demographics and computational algorithms. This study aimed to investigate optimal perfusion thresholds for quantifying infarct and penumbra volumes using two post-processing CTP algorithms: Vitrea Bayesian and singular value decomposition plus (SVD+). We utilized 107 AIS patients (67 non-intervention patients and 40 successful reperfusion of thrombolysis in cerebral infarction (2b/3) patients). Infarct volumes were predicted for both post-processing algorithms through contralateral hemisphere comparisons using absolute time-to-peak (TTP) and relative regional cerebral blood volume (rCBV) thresholds ranging from +2.8 seconds to +9.3 seconds and –0.23 to –0.56 respectively. Optimal thresholds were determined by minimizing differences between predicted CTP and 24-hour fluid-attenuation inversion recovery magnetic resonance imaging infarct. Optimal thresholds were tested on 60 validation patients (30 intervention and 30 non-intervention) and compared using RAPID CTP software. Among the 67 non-intervention and 40 intervention patients, the following optimal thresholds were determined: intervention Bayesian: TTP = +4.8 seconds, rCBV = –0.29; intervention SVD+: TTP = +5.8 seconds, rCBV = –0.29; non-intervention Bayesian: TTP = +5.3 seconds, rCBV = –0.32; non-intervention SVD+: TTP = +6.3 seconds, rCBV = –0.26. When comparing SVD+ and Bayesian post-processing algorithms, optimal thresholds for TTP were significantly different for intervention and non-intervention patients. rCBV optimal thresholds were equal for intervention patients and significantly different for non-intervention patients. Comparison with commercially utilized software indicated similar performance.

Keywords

Aged, 80 and over, Male, Blood Volume, Iohexol, Contrast Media, Bayes Theorem, Middle Aged, Magnetic Resonance Imaging, Cerebrovascular Circulation, Humans, Radiographic Image Interpretation, Computer-Assisted, Female, Thrombolytic Therapy, Tomography, X-Ray Computed, Algorithms, Aged, Ischemic Stroke, Retrospective Studies, Thrombectomy

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
bronze