Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Cybernetics
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Set-Based Discrete Particle Swarm Optimization for Wastewater Treatment Process Effluent Scheduling

Authors: Hong-Gui Han; Zi-Ang Xu; Jing-Jing Wang;

A Novel Set-Based Discrete Particle Swarm Optimization for Wastewater Treatment Process Effluent Scheduling

Abstract

With the escalating severity of environmental pollution caused by effluent, the wastewater treatment process (WWTP) has gained significant attention. The wastewater treatment efficiency and effluent quality are significantly impacted by effluent scheduling that adjusts the hydraulic retention time. However, the sequential batch and continuous nature of the effluent pose challenges, resulting in complex scheduling models with strong constraints that are difficult to tackle using existing scheduling methods. To optimize maximum completion time and effluent quality simultaneously, this article proposes a restructured set-based discrete particle swarm optimization (RS-DPSO) algorithm to address the WWTP effluent scheduling problem (WWTP-ESP). First, an effective encoding and decoding method is designed to effectively map solutions to feasible schedules using temporal and spatial information. Second, a restructured set-based discrete particle swarm algorithm is introduced to enhance the searching ability in discrete solution space via restructuring the solution set. Third, a constraint handling strategy based on violation degree ranking is designed to reduce the waste of computational resources. Fourth, a Sobel filter based local search is proposed to guide particle search direction to enhance search efficiency ability. The RS-DPSO provides a novel method for solving WWTP-ESP problems with complex discrete solution space. The comparative experiments indicate that the novel designs are effective and the proposed algorithm has superior performance over existing algorithms in solving the WWTP-ESP.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!