Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal for Numerical Methods in Fluids
Article . 2024 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integrated artificial intelligence and non‐similar analysis for forced convection of radially magnetized ternary hybrid nanofluid of Carreau‐Yasuda fluid model over a curved stretching surface

Integrated artificial intelligence and non-similar analysis for forced convection of radially magnetized ternary hybrid nanofluid of Carreau-Yasuda fluid model over a curved stretching surface
Authors: Ahmed Jan; Muhammad Mushtaq; Muhammad Imran Khan; Umer Farooq;

Integrated artificial intelligence and non‐similar analysis for forced convection of radially magnetized ternary hybrid nanofluid of Carreau‐Yasuda fluid model over a curved stretching surface

Abstract

AbstractThe current study investigates the boundary layer flow of Carreau‐Yasuda (C‐Y) ternary hybrid nanofluid model in a porous medium across curved surface stretching at linear rate under the influence of applied radial magnetic field. , and are nanoparticles and ethylene glycol is considered as base fluid. The effects of viscous dissipation and ohmic heating are present in the energy equation. The governing partial differential equation (PDEs) is nondimensionalized using non‐similarity transformations. They can be treated as ordinary differential equations (ODEs) using local non‐similarity method and solutions are obtained via bvp4c MATLAB tools. The results are evaluated by introducing computational intelligence approach utilizing the AI‐based Levenberg–Marquardt scheme with a backpropagation neural network (LMS‐BPNN) to investigate flow stability. The authors intend to use AI‐based LMS‐BPNN is to optimize the behavior of the hybrid nanofluid (HNF) flow of Carreau‐Yasuda fluid across a stretching curved sheet. Initial/reference solutions are obtained through bvp4c function (an embedded MATLAB function designed to solve systems of ODEs) by systematically adjusting input parameters as demonstrated in Scenarios 1–5. There are three options to divide the numerical data: 80% for training, 10% for testing, and an additional 10% for validation. The LMS‐BPNN is used for approximate solutions of Scenario 1–5. The efficiency and reliability of LMS‐BPNN are validated through fitness curves based on correlation index (R), error, and regression analysis. The velocity and temperature profiles asymptotically satisfy boundary conditions of Scenario 1–5 with LMS‐BPNN.

Related Organizations
Keywords

Carreau-Yasuda fluid model, non-similar analysis, Fluid mechanics, curved surface, artificial neural networking, Numerical analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!