
arXiv: 2305.06848
We study a class of nonconvex nonsmooth optimization problems in which the objective is a sum of two functions: One function is the average of a large number of differentiable functions, while the other function is proper, lower semicontinuous and has a surrogate function that satisfies standard assumptions. Such problems arise in machine learning and regularized empirical risk minimization applications. However, nonconvexity and the large-sum structure are challenging for the design of new algorithms. Consequently, effective algorithms for such scenarios are scarce. We introduce and study three stochastic variance-reduced majorization-minimization (MM) algorithms, combining the general MM principle with new variance-reduced techniques. We provide almost surely subsequential convergence of the generated sequence to a stationary point. We further show that our algorithms possess the best-known complexity bounds in terms of gradient evaluations. We demonstrate the effectiveness of our algorithms on sparse binary classification problems, sparse multi-class logistic regressions, and neural networks by employing several widely-used and publicly available data sets.
majorization-minimization, variance reduction techniques, surrogate functions, 90C26, 65K05, Numerical mathematical programming methods, Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), Nonconvex programming, global optimization, Mathematics - Optimization and Control
majorization-minimization, variance reduction techniques, surrogate functions, 90C26, 65K05, Numerical mathematical programming methods, Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), Nonconvex programming, global optimization, Mathematics - Optimization and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
