
doi: 10.5120/9329-3634
mining is a recent discipline combining Information Retrieval and Computational Linguistics which is concerned with the opinion a document expresses and not just with the topic in the document. Online forums, newsgroups, blogs, and specialized sites provide voluminous information feeds from where opinions can be retrieved. Opinion's polarity is established through application of machine learning techniques for classification of textual reviews as either a positive or negative class. In this paper, it is proposed to extract the feature set from reviews using Inverse document frequency and the reviews are classified as positive or negative using Bagging algorithms. The proposed method is evaluated using a subset of Internet Movie Database (IMBd).
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
