Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eNeuroarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
eNeuro
Article . 2023 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
eNeuro
Article . 2023
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Simple, Lightweight, and Low-Cost Customizable Multielectrode Array for Local Field Potential Recordings

Authors: Richard Quansah Amissah; Abdalla M. Albeely; Elise M. Bragg; Melissa L. Perreault; Wilder T. Doucette; Jibran Y. Khokhar;

A Simple, Lightweight, and Low-Cost Customizable Multielectrode Array for Local Field Potential Recordings

Abstract

AbstractLocal field potential (LFP) recording is a valuable method for assessing brain systems communication. Multiple methods have been developed to collect LFP data to study the rhythmic activity of the brain. These methods range from the use of single or bundled metal electrodes to electrode arrays that can target multiple brain regions. Although these electrodes are efficient in collecting LFP activity, they can be expensive, difficult to build, and less adaptable to different applications, which may include targeting multiple brain regions simultaneously. Here, the building process for a 16-channel customizable multielectrode array (CMEA) that can be used to collect LFP data from different brain regions simultaneously in rats is described. These CMEA electrode arrays are lightweight (<1 g), take little time to build (<1 h), and are affordable ($15 Canadian). The CMEA can also be modified to record single-unit and multiunit activity in addition to LFP activity using both wired and wireless neural data acquisition systems. Moreover, these CMEAs can be used to explore neural activity (LFP and single-unit/multiunit activity) in preliminary studies, before purchasing more expensive electrodes for targeted studies. Together, these characteristics make the described CMEA a competitive alternative to the commercially available multielectrode arrays for its simplicity, low cost, and efficiency in collecting LFP data in freely behaving animals.

Keywords

Canada, Animals, Brain, Open Source Tools and Methods, Rats

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
gold
Related to Research communities